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Abstract

A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode
shapes of solid cones with and without an axial circular cylindrical hole, having arbitrary constraints on their
boundaries. The method is based upon the 3-D dynamic equations of elasticity. Displacement components u,, 1y, and u,
in the radial, circumferential, and axial directions, respectively, are taken to be sinusoidal in time, periodic in 6, and
algebraic polynomials in the  and z directions. Potential (strain) and kinetic energies of the cones are formulated, the
Ritz method is used to solve the eigenvalue problem, and upper bound values of the frequencies are obtained by
minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values.
Novel numerical results are presented for solid cones with and without an axial circular cylindrical hole. Convergence
to four-digit exactitude is demonstrated for the first five frequencies of the cones.
© 2004 Published by Elsevier Ltd.
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1. Introduction

Three-dimensional (3-D) analysis of structural elements has long been a goal of those who work in the
field. With the current availability of computers of increased speed and capacity, it is now possible to
perform 3-D structural analyses of bodies to obtain accurate values of static displacements, free vibration
frequencies and mode shapes, and buckling loads and mode shapes.

The literature that deals with the free vibration of thick conical shells or cones based upon 3-D analyses
is quite limited. The majority of the existing literature describes the vibration analysis for thin conical shells,
based upon a thin shell or membrane type of shell theory (Leissa, 1973). The first contribution to the 3-D
analysis of conical shells was by Leissa and So (1995) applying the Ritz method. Five years later, the conical
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Fig. 1. Right triangular cross-section of a circular cylindrical body of revolution with linearly varying wall thickness and the coordinate
system (r, 0, z).

shells were analyzed by a finite element method (Buchanan, 2000; Buchanan and Wong, 2001). However,
they all examined the conical shells having uniform wall thickness. Some additional study gave some
numerical results for linearly varying wall thickness (Leissa and Kang, 1999; Kang and Leissa, 1999). All
the above literature is limited to hollow truncated cones (i.e., shells). A search of the literature has revealed
no 3-D analysis for solid cones.

In the present 3-D analysis, the Ritz method is used to obtain accurate frequencies for solid cones with
and without an axial circular cylindrical hole. To accommodate these configurations a type of cylindrical
coordinate system is used, as shown in Fig. 1, instead of curvilinear coordinates related to the shell mid-
surface which were used in the previous publications of the present authors. Although the method itself
does not yield exact solutions, proper use of displacement components in the form of algebraic polynomials
permits one to obtain frequency upper bounds that are as close to the exact values as desired. Frequencies
presented in this work, thus obtained, are very close to their exact values, being exact to four significant
figures.

2. Method of analysis

Fig. 1 shows the right triangular cross-section of a circular cylindrical body of revolution with thickness
(h) linearly varying in the axial direction (z), and having an inner radius a and an outer radius D/2 at the
bottom. The cross-section has zero thickness at the top (z = 0) and 4, at the bottom (z = L), where L is axial
length. The curvilinear coordinate system (r, 0, z), also shown in the figure, is used in the analysis. Unlike
classical cylindrical coordinates, the radial coordinate () is measured from the inner cylindrical surface
(instead of the axis), where the inner radius (¢) may be as small as desired. The circumferential coordinate
(rotation about the axis) is the angle 6. Rotating the cross-section of Fig. 1 one revolution about the axis of
revolution (»r = —a) results in a solid cone with an axial circular cylindrical hole, or a solid cone without a
hole when a approaches zero. Thus the valid ranges of the curvilinear coordinates are given for the cone by
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h
Ogrgh(_sz>, 0<0<2n, 0<z<L. (1)

Utilizing tensor analysis (Kang, 1997), the three equations of motion in the curvilinear coordinate system
(r,0,z) were found to be

1
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where o,; are the normal (i = j) and shear (i # j) stress components; u,, uy, and u, are the displacement
components in the r, 0, and z directions, respectively; p is mass density per unit volume; the commas
indicate spatial derivatives; and the dots denote time derivatives.

The well-known relationships between the stress (¢;;) and tensorial strains (g;) of isotropic, linear
elasticity are

i = ;»,8517 + ZGSU, (3)

where 1 and G are the Lamé parameters, expressed in terms of Young’s modulus (E£) and Poisson’s ratio (v)
for an isotropic solid as:

Ev E
= (= 4
(1+v)(1—=2v)’ 2(1+v)’ @)
& = &, + & + ¢ is the trace of the strain tensor, and J;; is Kronecker’s delta.
The three-dimensional (3-D) tensorial strains are found to be related to the three displacements u,, uy,
and u, by (Kang, 1997)

Upp + Uy
o = Uy 00 = ———— zz = Uzz >a
& Urry €00 atr & Uz, (5a)
1 U9 — U 1 1 U9
0 = & r — ) oz — A \Urz z,r )y 0z — = z —. 5b
&0 2{”0,-# e } 3 2(u,+u7) & 2[u0‘+a+r (5b)

Because the strains are related to the displacement components by Egs. (5), unacceptable strain sin-
gularities may be encountered exactly at » = 0 in case of no axial circular cylindrical hole (a = 0) due to the
term 1/(a + r). Such singularities may be avoided by numerically integrating within the volume of the body
such that a # 0 (say, a/h, = 1075).

During vibratory deformation of the body, its strain (potential) energy (7) is the integral over the do-
main (Q):

1
V= 3 /(Urrgrr + G000 + bz + 201080 + 20,26, + 200.80.) (a + ) drd0dz. (6)
Q
Substituting Eqgs. (3) and (5) into Eq. (6) results in the strain energy in terms of the three displacements:
1
V= 3 /Q [2(en + €00 + &) + 2G{e] + &5y + &2 + 2(e%y + & + €.) }] (a +r) drdOdz, (7)

where the tensorial strains ¢; are defined in terms of the three displacements by Egs. (5).
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The kinetic energy (7) is simply

1
T:i/mﬁ+%+@w+nww@. (8)
Q

For convenience, the radial r and axial z and coordinates are made dimensionless as:
Yy=r/hy, (=z/L 9)
Thus the valid ranges of the nondimensional curvilinear coordinates (¥, ,() are given by
0<y<({ 0<0<2m, 0<(<I (10)

For the free, undamped vibration, the time (¢) response of the three displacements is sinusoidal and,
moreover, the circular symmetry of the body allows the displacements to be expressed by

u.(y,0,(,t) = U.(y, () cosnBsin(wt + a), (11a)
ug(W,0,¢,t) = Up(y, {) sin n0 sin(wt + o), (11b)
u,(,0,{,t) = U, (Y, () cosnOsin(wt + o), (Ilc)

where U,, Uy, and U, are displacement functions of y and {, w is a natural frequency, and o is an arbitrary
phase angle determined by the initial conditions. The circumferential wave number is taken to be an integer
(n=0,1,2,3,...,00) for a circumferentially closed shell (0 < 0 < 360°), to ensure periodicity in 6. Then Egs.
(11) account for all free vibration modes except for the torsional ones. These modes arise from an alter-
native set of solutions which are the same as Eqs. (11), except that cosn0 and sin n0 are interchanged. For
n > 0, this set duplicates the solutions of Egs. (11), with the symmetry axes of the mode shapes being
rotated. But for n =0 the alternative set reduces to u, = u, =0, uy = Uj(r,z) sin(wt + o), which corre-
sponds to the torsional modes. The displacements uncouple by circumferential wave number (n), leaving
only coupling in r and z.

The Ritz method uses the maximum potential (strain) energy (Vi) and the maximum kinetic energy
(Tmax) functionals in a cycle of vibratory motion. The functionals are obtained by setting sin®(w? 4 o) and
cos?(wt + o) equal to unity in Egs. (7) and (8) after the displacements (11) are substituted, and by using the
nondimensional coordinates ¥ and { as follows:
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and I'y and I', are constants, defined by

2n .
2n if n =0,
F]E/O cosznﬁz{n ifn>1 (15a)
o 0 ifn=0
FZE/O sin n9:{n ifn)l? (15b)

It is known that A and G have the same units as £ from Egs. (4). The nondimensional constant /G in Eq.
(12) involves only v; i.e.,

A 2
R (16)
The displacement functions U,, Uy, and U, in Eqgs. (11) are further assumed as
I J
U, 0 =000, 0> > At (17a)
i=0 ;=0
K L
Us(Y,0) = ny(¥, 0) Z ZBkllﬁkCl (17b)
k=0 =0
M N
(lp C —’72 lﬁ C Z Z mnlp C (17C)

m=0 n=0

and similarly for U;, where i, j, k, [, m, and n are integers; I, J, K, L, M, and N are the highest degrees of the
polynomial terms; 4;;, By and C,, are arbitrary coefficients to be determined, and the # are functions
depending upon the geometric boundary conditions to be enforced. For example:

1. Completely free: n, =n, =n, = 1.

2. Bottom end (z = L) fixed, remaining boundaries free: n, =n, =n, = { — 1.

3. Inner surface (» = 0) fixed, remaining boundaries free: 1, = n, =5, = .

4. Outer surface (r = zhy, /L) fixed, remaining boundaries free: , =y =n. =y — {.
5. Inner surface restrained normally and axially, but not circumferentially:

n=n=y, n=1

6. Inner surface restrained normally, but not tangentially: n, =, n, =5, = 1.

The functions of 1 shown above, impose only the necessary geometric constraints. Together with the
algebraic polynomials in Egs. (17), they form function sets which are mathematically complete (Kant-
orovich and Krylov, 1958, pp. 266-268). Thus, the function sets are capable of representing any 3-D motion
of the body with increasing accuracy as the indices /,./, ..., N are increased. In the limit, as sufficient terms
are taken, all internal kinematic constraints vanish, and the functions (17) will approach the exact solution
as closely as desired.

The eigenvalue problem is formulated by minimizing the free vibration frequencies with respect to the
arbitrary coefficients 4;;, By and C,,, thereby minimizing the effects of the internal constraints present,
when the function sets are finite. This corresponds to the equations (Ritz, 1909):
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Viax — Tax) =0 (i=0,1,2,....1;j=0,1,2,....J), (18a)
0
—(Vmax_ﬂnax)zo (k:0,1,2,...,K;l:0,1,2,...,L), (lgb)
0By
0
o Vo = Taw) =0 (m=0,1,2,... . M;n=0,1,2,....N). (18c)

Eqgs. (18) yield a set of (/+1)(J+ 1)+ (K + 1)(L+ 1) + (M + 1)(N + 1) linear, homogeneous, algebraic
equations in the unknowns 4;;, By, and C,,. For a nontrivial solution, the determinant of the coefficient
matrix is set equal to zero, which yields the frequencies (eigenvalues). These frequencies are upper bounds
on the exact values. The mode shape (eigenfunction) corresponding to each frequency is obtained, in the
usual manner, by substituting each w back into the set of algebraic equations, and solving for the ratios of
coeflicients.

3. Convergence studies

To establish the accuracy of frequencies obtained by the procedure described above, it is necessary to
conduct some convergence studies to determine the number of terms required in the power series of Egs.
(17). A convergence study is based upon the fact that all the frequencies obtained by the Ritz method
should converge to their exact values in an upper bound manner. If the results do not converge properly, or
converge too slowly, it is likely that the assumed displacements may be poor ones, or be missing some
functions from a minimal complete set of polynomials.

Table 1 is such a study for the completely free, short (L/D = 0.2) solid cone without an axial circular
cylindrical hole (a = 0), depicted as the outermost configuration in Fig. 2. The table lists the first five
nondimensional frequencies in wL+/p/G with v = 0.3, for mode shapes having two circumferential waves
(n=2).

To make the study of convergence less complicated, equal number of polynomial terms were taken in
both the r (or ) coordinate (i.e., / = K = M) and z (or {) coordinate (i.e., J = L = N), although some
computational optimization could be obtained for some configurations and some mode shapes by using
unequal number of polynomial terms.

The symbols TR and TZ in the table indicate the total number of polynomial terms used in the » (or )
and z (or {) directions, respectively. Note that the frequency determinant order DET is related to TR and
TZ as follows:

TR x TZ for torsional modes (n = 0),
DET = ¢ 2x TR x TZ for axisymmetric modes (n = 0), (19)
3x TR x TZ for general modes (n > 1).

Table 1 shows the monotonic convergence of all five frequencies as TR (=7+ 1, K+ 1, and M + 1 in
Egs. (17)) is increased, as well as TZ (=J + 1, L+ 1, and N + 1 in Egs. (17)). One sees, for example, that
the lowest nondimensional frequency wL+/p/G with n = 2 converges to four digits (0.3394) when as few as
3x(5x4)=060 terms are used, which results in DET = 60. Moreover, this accuracy requires using at least
five terms in the radial direction (TR =5) and four in the axial direction (TZ =4). Numbers in underlined,
bold-face type in Table 1 are the most accurate values (i.e., least upper bounds) achieved with the smallest
determinant sizes.
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Table 1
Convergence of the five lowest frequencies in wL+/p/G of a completely free, short (L/D = 0.2) solid cone (a = 0) for n = 2 with v = 0.3

TR TZ DET 1 2 3 4 5

2 2 12 0.7467 1.459 3.003 6.488 8.636
2 4 24 0.6777 1.453 2.927 5.772 7.388
2 6 36 0.6738 1.453 2.926 5.749 7.340
2 8 48 0.6734 1.453 2.926 5.748 7.339
3 2 18 0.3526 1.376 2.012 2.061 3.989
3 4 36 0.3443 1.362 1.881 2.017 3.926
3 6 54 0.3443 1.362 1.868 2.017 3.924
3 8 72 0.3443 1.362 1.867 2.017 3.924
4 2 24 0.3481 1.294 1.400 1.989 3.463
4 4 48 0.3395 1.158 1.380 1.984 3.252
4 6 72 0.3394 1.157 1.379 1.984 3.217
4 8 96 0.3394 1.157 1.379 1.984 3.213
5 2 30 0.3481 1.244 1.391 1.974 2.492
5 4 60 0.3394 1.107 1.376 1.969 2.193
5 6 90 0.3394 1.107 1.376 1.969 2.187
5 8 120 0.3394 1.107 1.376 1.969 2.187
6 2 36 0.3481 1.241 1.390 1.974 2.316
6 4 72 0.3394 1.105 1.375 1.968 2.052
6 6 108 0.3394 1.105 1.375 1.968 2.051
6 8 144 0.3394 1.105 1.375 1.968 2.050

Notes: TR =total numbers of polynomial terms used in the » (or ) direction.
TZ = total number of polynomial terms used in the z (or {) direction.
DET = frequency determinant order.

L/D= 02 0.5 1 25 52 1 0.5 0.2
Fig. 2. Solid cones for L/D =0.2, 0.5, 1, 2, and 5.

Table 2 is a similar convergence study for the much more slender (L/A, = 10) solid cone with an axial
circular cylindrical hole (a/h, = 0.2) shown at the bottom, right side of Fig. 3. One sees that the lowest
frequency (1.670) for n = 1 requires using at least (TR, TZ) = (3, 8) for exactitude to four significant figures.
Compared with the short solid cone in Table 1, more polynomial terms in the axial direction (TZ) are
needed, while less are needed in the radial direction (TR) to obtain the same accuracy in frequencies.

4. Numerical results and discussion

Table 3 presents nondimensional frequencies in wL+/p/G of completely free, solid cones without an axial
circular cylindrical hole (¢ = 0) for L/D = 0.2, 0.5, 1, 2, and 5. These configurations are depicted in Fig. 2.
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Table 2
Convergence of the five lowest frequencies in wL+/p/G of a completely free, slender (L/h, = 10) cone with an axial circular cylindrical
hole (a/hy, = 0.2) for n =1 with v = 0.3

TR TZ DET 1 2 3 4 5

2 2 12 17.21 26.49 27.95 42.13 47.29
2 4 24 1.713 5.863 18.83 23.60 26.12
2 6 36 1.684 3.763 6.517 13.76 20.69
2 8 48 1.682 3.627 6.036 9.498 13.30
2 10 60 1.682 3.627 5.992 8.623 11.50
2 11 66 1.682 3.627 5.990 8.606 11.40
2 12 72 1.682 3.627 5.990 8.597 11.35
2 13 78 1.682 3.627 5.990 8.596 11.32
3 2 18 16.97 26.15 27.81 39.23 45.17
3 4 36 1.698 5.658 18.48 23.21 26.00
3 6 54 1.672 3.732 6.445 13.36 20.29
3 8 72 1.670 3.602 5.986 9.374 13.19
3 10 90 1.670 3.601 5.949 8.558 11.39
3 11 99 1.670 3.601 5.947 8.540 11.31
3 12 108 1.670 3.601 5.946 8.532 11.25
3 13 117 1.670 3.601 5.946 8.531 11.23
4 2 24 16.88 25.51 27.56 39.01 42.17
4 4 48 1.695 5.560 18.31 22.87 25.61
4 6 72 1.672 3.726 6.422 13.09 20.07
4 8 96 1.670 3.600 5.978 9.316 13.14
4 10 120 1.670 3.600 5.944 8.547 11.36
4 11 132 1.670 3.599 5.942 8.529 11.29
4 12 144 1.670 3.599 5.941 8.521 11.23
4 13 156 1.670 3.599 5.941 8.521 11.21
5 2 30 16.85 25.50 27.55 38.84 41.95
5 4 60 1.695 5.531 18.26 22.78 25.58
5 6 90 1.672 3.724 6.414 12.97 19.97
5 8 120 1.670 3.600 5.976 9.295 13.12
5 10 150 1.670 3.599 5.943 8.545 11.35
5 11 165 1.670 3.599 5.941 8.527 11.29
5 12 180 1.670 3.599 5.941 8.520 11.23
5 13 195 1.670 3.599 5.941 8.520 11.21

Notes: TR =total number of polynomial terms used in the r (or ) direction.
TZ = total number of polynomial terms used in the z (or {) direction.
DET = frequency determinant order.

Poisson’s ratio (v) was taken to be 0.3. Thirty-five frequencies are given for each configuration, which are
arise from seven circumferential wave numbers (n = 07,04, 1, 2, 3, 4, 5) and the first five frequencies (s = 1,
2, 3, 4, 5) for each value of n, where the superscripts T and A indicate torsional and axisymmetric modes,
respectively. The numbers in parentheses identify the first five frequencies for each configuration. The zero
frequencies of rigid body modes are omitted from the table.

Table 4 presents nondimensional frequencies in wL+/p/G of completely free cones with an axial circular
cylindrical hole (a/h, = 0.2) for L/h, = 0.4, 1, 2, 4, and 10. These configurations are shown in Fig. 3.
Poisson’s ratio (v) was also taken to be 0.3. All the configurations shown in Fig. 3 are exactly the same as
those in Fig. 2 if the radius (a) of the circular holes approaches zero. Thus L/, = 0.4, 1, 2, 4, and 10 in Fig.
3 correspond to L/D = 0.2, 0.5, 1, 2, and 5 in Fig. 2, respectively, if the sides were moved inwards to close
the holes.
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7
10

Fig. 3. Cones with axial circular cylindrical holes (a/h, = 0.2) for L/h, = 0.4, 1, 2, 4, and 10.

L/hb=2 L/hb:4 L/hb

It is seen from Tables 3 and 4 that for short (L/D<1 or L/h, <2) cones the fundamental (lowest) fre-
quency is for modes having two (rn = 2) circumferential half-waves, while for long and slender (L/D = 2 or
L/hy = 4) ones the fundamental one is for n» = 1. That is, for these more slender configurations the lowest
frequencies correspond to bending modes of beams of length L. Tables 3 and 4 also show that as the cones
become more long and slender (L/D > 1 or L/hy, > 2) the torsional modes (n = 0T) are seen to be signifi-
cant, each having one such mode among the first five. It is noticed that all the frequencies for the solid cones
without a hole are larger than the ones for the cones with a hole, as expected, except for the modes of n = 1
of long and slender cones (L/D =2 and 5 or L/h, =4 and 10). This is because the ones with holes have
greater total mass, and also because the hole tends to decrease the stiffness of the body for the modes of the
short cones, but increases it greatly for the beam bending modes (n = 1) of the slender cones.

5. Concluding remarks

A three-dimensional (3-D) method of analysis has been presented for determining the free vibration
frequencies and mode shapes of solid cones with and without an axial circular cylindrical hole having
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Table 3
Frequencies in wL\/p/G of completely free, solid cones (a = 0) for v = 0.3
n s L/D
0.2 0.5 1 2 5

or 1 2.066 4.314 5.334(3) 5.647(3) 5.744(4)
2 3.390 6.338 8.371 8.911 9.065
3 4.623 8.072 11.12 12.07 12.28
4 5.125 8.772 12.57 15.19 15.47
5 5.997 10.81 14.42 18.30 18.64

0A 1 0.5381(3) 2.335(3) 5.384(4) 6.971(4) 7.203
2 1.268 4.306 6.606 11.35 12.34
3 1.901 4.939 8.618 12.13 17.33
4 2.172 6.180 10.44 15.04 22.15
5 3.170 7.783 11.87 17.74 26.67

1 1 0.8077(5) 3.002(4) 3.988(2) 2.886(1) 1.353(1)
2 1.265 3.315 5.769 5.241(2) 2.654(2)
3 1.650 4.554 6.886 7.663(5) 4.224(3)
4 2.594 5.452 7.274 9.810 6.029(5)
5 2.627 6.483 8.918 11.64 8.032

2 1 0.3394(1) 1.566(1) 3.881(1) 8.357 21.36
2 1.105 3.295 6.215 11.47 26.14
3 1.375 4.467 9.254 15.60 30.75
4 1.967 4.831 9.564 16.81 33.79
5 2.041 6.781 10.57 18.42 37.58

3 1 0.5048(2) 2.319(2) 5.763(5) 12.50 32.29
2 1.385 4.772 9.037 16.91 39.38
3 1.994 5.503 11.89 21.36 44.59
4 2.403 6.508 12.46 21.96 47.95
5 2.651 8.123 13.64 24.61 51.12

4 1 0.6591(4) 3.017(5) 7.498 16.32 42.65
2 1.653 6.011 11.48 21.65 51.23
3 2.509 6.515 14.13 26.22 57.18
4 2.769 8.170 15.45 26.88 60.42
5 3.332 9.379 16.53 30.29 64.40

5 1 0.8095 3.695 9.194 20.02 53.15
2 1.918 7.156 13.74 26.07 63.29
3 2.981 7.522 16.35 30.65 69.88
4 3.155 9.768 18.14 31.71 72.94
5 3.996 10.62 19.42 35.37 77.24

Notes: T =torsional mode; A = axisymmetric mode.
Numbers in parentheses identify frequency sequence.

arbitrary constraints on their boundaries. The 3-D equations of the theory of elasticity are used in their
general forms for isotropic, homogeneous materials, with the corresponding energy functionals. They are
only limited to small strains. No other constraints are placed upon the displacements.

Numerical results for frequencies were presented for several completely free cones. The frequencies are
exact up to four significant figures for the lower frequencies for the size of determinants used (approxi-
mately 150); but if greater accuracy is needed, especially for the higher frequencies, larger determinants
would be required. Nevertheless, these determinant sizes are at least one order of magnitude less than those
that would be required for equivalent accuracy by finite element analysis.
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Table 4
Frequencies in wL+/p/G of completely free cones with axial circular cylindrical holes (a/hy, = 0.2) for v=10.3
n s L/hy
0.4 1 2 4 10

0T 1 1.746 3.655 4.520(5) 4.782(2) 4.862(3)
2 2.923 5.426 7.240 7.705 7.834
3 4.048 6.947 9.692 10.65 10.83
4 4.433 7.638 10.80 13.62 13.86
5 5.316 9.599 12.82 16.62 16.92

0A 1 0.4280(3) 1.881(2) 4.381(4) 6.325(4) 6.563(5)
2 1.034 3.257 5.580 9.347 11.51
3 1.375 4.145 7.087 10.44 16.30
4 1.838 5.451 8.531 12.72 20.79
5 2.754 6.067 9.898 14.62 23.67

1 1 0.6576(5) 2.574 3.907(2) 3.212(1) 1.670(1)
2 1.084 2.661 4.945 5.785(3) 3.599(2)
3 1.280 3.739 5.459 7.903 5.941(4)
4 1.975 4.722 6.568 9.505 8.520
5 2.396 5.394 8.255 10.26 11.21

2 1 0.2473(1) 1.163(1) 2.939(1) 6.340(5) 12.09
2 0.8420 2.159(4) 4.267(3) 7.990 16.29
3 0.9204 3.529 5.478 8.110 18.91
4 1.547 3.762 6.874 10.09 21.50
5 1.654 4432 7.753 11.13 21.57

3 1 0.4168(2) 1.920(3) 4.777 10.37 26.75
2 1.144 3.883 7.392 13.87 27.50
3 1.613 4.565 9.841 15.25 32.44
4 1.982 5.339 10.11 17.30 36.52
5 2.175 6.289 10.61 18.13 39.11

4 1 0.5490(4) 2.513(5) 6.247 13.59 35.24
2 1.377 4.999 9.535 18.00 42.39
3 2.086 5.424 11.71 21.77 47.08
4 2.293 6.791 12.79 22.33 49.24
5 2.771 7.719 13.67 24.37 49.78

5 1 0.6745 3.079 7.651 16.66 43.52
2 1.597 5.956 11.43 21.70 51.61
3 2.483 6.258 13.53 25.50 56.74
4 2.593 8.130 15.03 26.35 59.49
5 3.328 8.740 16.04 29.28 62.70

Notes: T =torsional mode; A = axisymmetric mode.
Numbers in parentheses identify frequency sequence.

Results were presented for completely free cones. However, as described in Section 2, the procedure
could also be used for cones having constraints at one or more of the cone surfaces.
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